TD-PSOLA …the hard way

Time-Domain Pitch Synchronous Overlap and Add (TD-PSOLA) can modify the fundamental frequency and duration of speech signals, without affecting the segment identity – that is, without changing the formants. Normally, it’s an automatic algorithm, but here we do it the hard way – by hand!

If you want to follow-along, you will need Audacity and these materials (a zip file containing a set of Audacity projects for the various stages of the algorithm).

In the example in the video, I increased F0, but the side effect was to make the duration shorter. Try it yourself, but this time make versions of the word with

  1. increased F0, but the same duration as the original
  2. longer duration, and the same F0 as the original

 

A simple synthetic vowel

Using Praat, we synthesise a simple vowel-like sound, starting with a pulse train, which we pass through a filter with resonant peaks.

Continue reading...

Sampling and quantisation

Is digital better than analogue? Here we discover that there are limitations when storing waveforms digitally. We learn that the consequence of sampling at a fixed rate is an upper limit on the frequencies that can be represented, called the Nyquist frequency. In addition to the limitations of sampling, storing each sample of the waveform as a […]

Continue reading...

The speed of sound

At the Parque de las Ciencias in Granada, Spain there is this long tube, open at the end nearest you and closed at the far end. We can calculate the length of this tube just from the audio recording, because we know the speed of sound. Here’s the waveform of part of the recording, showing […]

Continue reading...

My inaugural lecture

I talk about how speech synthesis works, in what I hope is a non-technical and accessible way, and finish off with an application of speech synthesis that gives personalised voices to people who are losing the ability to speak. I also try to mention bicycles as many times as possible. For a more up-to-date, slightly more technical, […]

Continue reading...

Autocorrelation for estimating F0

Autocorrelation

Most methods for estimating F0 start from autocorrelation. The idea is pretty simple: we are just looking for a repeating pattern in the waveform, which corresponds to the periodic vocal fold activity. For some waveforms, it might be possible to do that directly in the time domain, but in general that doesn’t work very well. […]

Continue reading...

Entropy: understanding the equation

The equation for entropy is very often presented in textbooks without much explanation, other than to say it has the desired properties. Here, I attempt an informal derivation of the equation starting from uniform probability distributions. A good way to think about information is in terms of sending messages. In the video, we send messages […]

Continue reading...

The Gaussian probability density function: understanding the equation

The equation for the Gaussian probability density function looks a little scary at first, but this video should help you understand what each of the terms is doing, and how they fit together. After watching the video download the spreadsheet which shows the calculations and plots from this video (tip: the Apple Numbers.app version includes images […]

Continue reading...

Pipeline architecture for TTS

Pipeline architecture

Most text-to-speech systems split the problem into two main stages. The first stage is called the front end and contains many separate processes which gradually build up a linguistic specification from the input text. The second stage typically uses language-independent techniques (although they still require a language-specific speech corpus) to generate a waveform. Here we see those two […]

Continue reading...

Windowing

When we say that a signal is non-stationary we mean that its properties, such as the spectrum, change over time. To analyse signals like this, we need to first assume that these properties do not change over some short period of time, called the frame. We can then analyse individual frames of the signal, one at a […]

Continue reading...

Spectrum and spectrogram

The spectrum and the spectrogram are much more useful ways of analysing speech signals than the waveform. We look at how to create them using Wavesurfer and what effect the analysis window size has on what we see.    

Continue reading...

Aliasing

Aliasing

In sampling and quantisation we saw that sampling a signal at a fixed rate means that there is an upper limit on the frequencies that can be represented. This limit is called the Nyquist frequency. Before sampling a signal, we must remove all energy above the Nyquist frequency, and here we will see what would […]

Continue reading...